论文标题

随机平衡的凯利综合体

Random Balanced Cayley Complexes

论文作者

Meshulam, Roy

论文摘要

令$ g $为有限的订单$ n $,$ 1 \ leq i \ leq k+1 $ let $ v_i = \ {i \} \ times g $。将每个$ v_i $查看为$ 0 $ -Dimensional复合体,令$ y_ {g,k} $表示simpericial join $ v_1*\ cdots*v_ v_ v_ {k+1} $。对于$ a \ subset g $ ling $ y_ {a,k} $是$ y_ {g,k} $的子复合,其中包含$ y_ {g,k} $的$(k-1)$ - 骨架,$ y_ {g $ k $ -simplices均为$ \ simplices $ \ \ {(1,x_1),x_1),\ ldots,k+1, y_ {g,k} $,以至于$ x_1 \ cdots x_ {k+1} \ in $。令$ l_ {k-1} $表示$ y_ {a,k} $的简化$(k-1)$ - th laplacian of $ y_ {a,k} $,作用于space $ c^{k-1}(y_ _ {a,k})$的真实价值$(k-1)$的$(k-1)$ - $ y_ {a a,k k} $的cochains $(k-1)$。 $(k-1)$ - th频谱差距$μ_{k-1}(y_ {a,k})$ y_ {a,k} $是$ l_ {k-1} $的最小特征。证明了以下Alon-Roichman定理的以下$ k $维相似:让$ k \ geq 1 $和$ε> 0 $固定,让$ a $是$ g $的随机子集$ m = $ m = \ weft \ left \ lef lceil \ lceil \ frac {10 k^2 \ log d p} $ rce $ rce $ $ g $的复杂不可还原表示。然后\ [{\ rm pr} \ big [〜μ_ {k-1}(y_ {a,k})<(1-ε)m〜 \ big] = o \ left(\ frac {1} {n} {n} {n} \ right)。 \]

Let $G$ be a finite group of order $n$ and for $1 \leq i \leq k+1$ let $V_i=\{i\} \times G$. Viewing each $V_i$ as a $0$-dimensional complex, let $Y_{G,k}$ denote the simplicial join $V_1*\cdots*V_{k+1}$. For $A \subset G$ let $Y_{A,k}$ be the subcomplex of $Y_{G,k}$ that contains the $(k-1)$-skeleton of $Y_{G,k}$ and whose $k$-simplices are all $\{(1,x_1),\ldots,(k+1,x_{k+1})\} \in Y_{G,k}$ such that $x_1\cdots x_{k+1} \in A$. Let $L_{k-1}$ denote the reduced $(k-1)$-th Laplacian of $Y_{A,k}$, acting on the space $C^{k-1}(Y_{A,k})$ of real valued $(k-1)$-cochains of $Y_{A,k}$. The $(k-1)$-th spectral gap $μ_{k-1}(Y_{A,k})$ of $Y_{A,k}$ is the minimal eigenvalue of $L_{k-1}$. The following $k$-dimensional analogue of the Alon-Roichman theorem is proved: Let $k \geq 1$ and $ε>0$ be fixed and let $A$ be a random subset of $G$ of size $m= \left\lceil\frac{10 k^2\log D}{ε^2}\right\rceil$ where $D$ is the sum of the degrees of the complex irreducible representations of $G$. Then \[ {\rm Pr}\big[~μ_{k-1}(Y_{A,k}) < (1-ε)m~\big] =O\left(\frac{1}{n}\right). \]

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源