论文标题
无界的多元可观察物,用于机器学习的全局SMEFT分析
Unbinned multivariate observables for global SMEFT analyses from machine learning
论文作者
论文摘要
粒子物理数据的理论解释,例如确定标准模型有效场理论(SMEFT)的Wilson系数,通常涉及从全局数据集中推断多个参数。优化此类解释需要鉴定对基础理论参数表现出最高敏感性的可观察物。在这项工作中,我们开发了一个灵活的开源框架ML4EFT,从而使无界的多元可观察物的集成到全球SMEFT拟合中。与传统的测量相比,这种可观察到的物质通过防止在最终统计运动学变量的子集中拆分时会产生的信息损失来增强对理论参数的敏感性。我们的策略结合了机器学习回归和分类技术,以使用Monte Carlo副本方法来估计和传播方法论不确定性,以参数化高维似然比参数化。作为概念的证明,我们在LHC构建了未扣除的多元可观察物,并在LHC上构建了Higgs+$ Z $生产,与BINNED测量相比,证明了它们对SMEFT参数空间的影响,并研究了与多变量输入相关的改进约束。由于要与参数数量进行四次训练量表的神经网络数量,并且可以完全平行,因此ML4EFT框架非常适合构建未链接的多变量可观察物,这些可观测值取决于全球拟合中最多需要数十个EFT系数。
Theoretical interpretations of particle physics data, such as the determination of the Wilson coefficients of the Standard Model Effective Field Theory (SMEFT), often involve the inference of multiple parameters from a global dataset. Optimizing such interpretations requires the identification of observables that exhibit the highest possible sensitivity to the underlying theory parameters. In this work we develop a flexible open source framework, ML4EFT, enabling the integration of unbinned multivariate observables into global SMEFT fits. As compared to traditional measurements, such observables enhance the sensitivity to the theory parameters by preventing the information loss incurred when binning in a subset of final-state kinematic variables. Our strategy combines machine learning regression and classification techniques to parameterize high-dimensional likelihood ratios, using the Monte Carlo replica method to estimate and propagate methodological uncertainties. As a proof of concept we construct unbinned multivariate observables for top-quark pair and Higgs+$Z$ production at the LHC, demonstrate their impact on the SMEFT parameter space as compared to binned measurements, and study the improved constraints associated to multivariate inputs. Since the number of neural networks to be trained scales quadratically with the number of parameters and can be fully parallelized, the ML4EFT framework is well-suited to construct unbinned multivariate observables which depend on up to tens of EFT coefficients, as required in global fits.