论文标题
在有向图中计数模式计数的复杂性,由Outgree参数化
The Complexity of Pattern Counting in Directed Graphs, Parameterised by the Outdegree
论文作者
论文摘要
我们研究以下基本问题的固定参数障碍性:给定两个定向图$ \ vec h $和$ \ vec g $,计算$ \ vec g $中$ \ vec h $的副本数量。易于理解的标准设置仅使用$ | \ vec h | $作为参数。在本文中,我们向前迈出了一步,并作为参数$ | \ vec h |+d(\ vec g)$采用,其中$ d(\ vec g)$是$ | \ vec g | $的最大超级。在此参数化下,我们通过两个新的结构参数,分数覆盖率$ρ^*$和源编号$α_s$在其非诱导和诱导版本中的固定参数障碍性。一方面,我们给出算法的运行时间$ f(| \ vec h |,d(\ vec g))\ cdot | \ vec g |^{ρ^*\!(\ vec h)+o(vec h)+o(1)} $ and $ f(| \ vec h |,d(\ vec g) h)+o(1)} $用于分别计数$ \ vec g $中的$ \ vec h $的副本和诱导副本;另一方面,我们表明,除非指数时间假设失败,否则对于任何类$ \ vec c $有向图的$ \ vec c $(诱导的)计数问题是固定参数时可固定的,并且仅当$ρ^*(\ vec c)$($α_s($α_s(\ vec c)$)时。这些结果解释了该模式的方向如何使计数变得容易或硬,并证明Chiba和Nishizeki及其扩展的经典算法(Chiba,Nishizeki Sicomp 85; Bressan Algorithmica 21)是最佳的。
We study the fixed-parameter tractability of the following fundamental problem: given two directed graphs $\vec H$ and $\vec G$, count the number of copies of $\vec H$ in $\vec G$. The standard setting, where the tractability is well understood, uses only $|\vec H|$ as a parameter. In this paper we take a step forward, and adopt as a parameter $|\vec H|+d(\vec G)$, where $d(\vec G)$ is the maximum outdegree of $|\vec G|$. Under this parameterization, we completely characterize the fixed-parameter tractability of the problem in both its non-induced and induced versions through two novel structural parameters, the fractional cover number $ρ^*$ and the source number $α_s$. On the one hand we give algorithms with running time $f(|\vec H|,d(\vec G)) \cdot |\vec G|^{ρ^*\!(\vec H)+O(1)}$ and $f(|\vec H|,d(\vec G)) \cdot |\vec G|^{α_s(\vec H)+O(1)}$ for counting respectively the copies and induced copies of $\vec H$ in $\vec G$; on the other hand we show that, unless the Exponential Time Hypothesis fails, for any class $\vec C$ of directed graphs the (induced) counting problem is fixed-parameter tractable if and only if $ρ^*(\vec C)$ ($α_s(\vec C)$) is bounded. These results explain how the orientation of the pattern can make counting easy or hard, and prove that a classic algorithm by Chiba and Nishizeki and its extensions (Chiba, Nishizeki SICOMP 85; Bressan Algorithmica 21) are optimal unless ETH fails.