论文标题
3D毫米波长雷达相机对的时空校准对
Spatiotemporal Calibration of 3D Millimetre-Wavelength Radar-Camera Pairs
论文作者
论文摘要
自动驾驶汽车(AVS)融合了来自多个传感器的数据和传感方式,以在不利条件下运行时赋予稳健性。雷达和摄像头是用于传感器融合的流行选择。尽管与摄像机图像相比,雷达测量值很少,但雷达扫描渗透雾,雨和雪。但是,准确的传感器融合取决于对传感器之间的空间变换的了解以及其测量时间中存在的任何时间不对对准。在AV的生命周期中,这些校准参数可能会发生变化,因此执行现场时空校准的能力对于确保可靠的长期运行至关重要。最先进的3D雷达相机时空校准算法需要定制的校准目标,而该目标在该领域不容易获得。在本文中,我们描述了一种无目标时空校准的算法,该算法不需要专门的基础设施。我们的方法利用雷达单元相对于固定的外部参考框架来测量其自我的能力。我们分析了时空校准问题的可识别性,并确定校准所需的动作。通过一系列模拟研究,我们表征了算法对测量噪声的灵敏度。最后,我们证明了三个现实世界系统的准确校准,包括手持传感器钻机和一个车辆安装的传感器阵列。我们的结果表明,我们能够匹配现有的,基于目标的方法的性能,同时在任意的,无基础架构的环境中进行校准。
Autonomous vehicles (AVs) fuse data from multiple sensors and sensing modalities to impart a measure of robustness when operating in adverse conditions. Radars and cameras are popular choices for use in sensor fusion; although radar measurements are sparse in comparison to camera images, radar scans penetrate fog, rain, and snow. However, accurate sensor fusion depends upon knowledge of the spatial transform between the sensors and any temporal misalignment that exists in their measurement times. During the life cycle of an AV, these calibration parameters may change, so the ability to perform in-situ spatiotemporal calibration is essential to ensure reliable long-term operation. State-of-the-art 3D radar-camera spatiotemporal calibration algorithms require bespoke calibration targets that are not readily available in the field. In this paper, we describe an algorithm for targetless spatiotemporal calibration that does not require specialized infrastructure. Our approach leverages the ability of the radar unit to measure its own ego-velocity relative to a fixed, external reference frame. We analyze the identifiability of the spatiotemporal calibration problem and determine the motions necessary for calibration. Through a series of simulation studies, we characterize the sensitivity of our algorithm to measurement noise. Finally, we demonstrate accurate calibration for three real-world systems, including a handheld sensor rig and a vehicle-mounted sensor array. Our results show that we are able to match the performance of an existing, target-based method, while calibrating in arbitrary, infrastructure-free environments.