论文标题

使用sachdev-ye-kitaev模型,普遍性及其在非高级多体量子混乱中的限制

Universality and its limits in non-Hermitian many-body quantum chaos using the Sachdev-Ye-Kitaev model

论文作者

García-García, Antonio M., Sá, Lucas, Verbaarschot, Jacobus J. M.

论文摘要

遗传学量子混沌系统中的光谱刚度标志着在时间尺度上存在动态通用特征,这可能比海森伯格时间短得多。我们通过对远程光谱相关器的详细分析来研究多体非量子混乱中这个时间尺度的类似物。为此,我们调查了非hermitian $ q $ - sachdev-ye-kitaev(NHSYK)模型的数字差异和光谱形式,该模型描述了零空间维度的$ n $ fermions。在对这些频谱的分析和数值分析后,对于非省随机矩阵的这些光谱可观察物以及仔细的展开后,我们发现与NHSYK模型的一致性良好,以$ q>> 2 $开始,以$ q $急剧降低的时间表。分析性地确定的偏离通用性的偏差来源是与量子动力学无关的集合波动。对于固定的$ Q $和足够大的$ n $,这些波动才会占主导地位,直到在海森伯格时间之后,因此光谱外形不再对量子混乱的研究不再有用。在所有情况下,我们的结果都表明光谱刚度有效地延迟了完全量子的观察。我们还表明,数字方差显示NHSYK模型和随机矩阵的非平稳光谱相关性。这种非平稳性,也与量子动力学无关,指出了这些可观察到的固有局限性,以描述量子混沌运动。另一方面,我们引入了局部频谱形式,该频谱形态被证明是固定的,不受集体波动的影响,并将其作为非危险量子混乱的有效诊断。对于$ q = 2 $,我们以$ \ log D $的时间尺度发现对泊松统计的饱和度,而$ \ sqrt d $ for $ q>>> 2 $,而$ d $ $ d $是州的总数。

Spectral rigidity in Hermitian quantum chaotic systems signals the presence of dynamical universal features at timescales that can be much shorter than the Heisenberg time. We study the analog of this timescale in many-body non-Hermitian quantum chaos by a detailed analysis of long-range spectral correlators. For that purpose, we investigate the number variance and the spectral form factor of a non-Hermitian $q$-body Sachdev-Ye-Kitaev (nHSYK) model, which describes $N$ fermions in zero spatial dimensions. After an analytical and numerical analysis of these spectral observables for non-Hermitian random matrices, and a careful unfolding, we find good agreement with the nHSYK model for $q > 2$ starting at a timescale that decreases sharply with $q$. The source of deviation from universality, identified analytically, is ensemble fluctuations not related to the quantum dynamics. For fixed $q$ and large enough $N$, these fluctuations become dominant up until after the Heisenberg time, so that the spectral form factor is no longer useful for the study of quantum chaos. In all cases, our results point to a weakened or vanishing spectral rigidity that effectively delays the observation of full quantum ergodicity. We also show that the number variance displays nonstationary spectral correlations for both the nHSYK model and random matrices. This nonstationarity, also not related to the quantum dynamics, points to intrinsic limitations of these observables to describe the quantum chaotic motion. On the other hand, we introduce the local spectral form factor, which is shown to be stationary and not affected by collective fluctuations, and propose it as an effective diagnostic of non-Hermitian quantum chaos. For $q = 2$, we find saturation to Poisson statistics at a timescale of $\log D$, compared to a scale of $\sqrt D$ for $ q>2$, with $D $ the total number of states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源