论文标题
通过带电粒子动力学的修饰的鲍里斯算法漂移近似
Drift approximation by the modified Boris algorithm of charged-particle dynamics in toroidal geometry
论文作者
论文摘要
在本文中,我们研究了环形公理对称几何形状下强磁场下的带电粒子动力学。使用精确和数值解的调制傅立叶膨胀,得出了环形几何形状中精确溶液的长期漂移运动,并在长时间尺度上提供了大型修改的鲍里斯算法的误差分析。数值实验说明了理论结果。
In this paper, we study the charged-particle dynamics under strong magnetic field in a toroidal axi-symmetric geometry. Using modulated Fourier expansions of the exact and numerical solutions, the long-term drift motion of the exact solution in toroidal geometry is derived and the error analysis of the large-stepsize modified Boris algorithm over long time scales is provided. Numerical experiments illustrate the theoretical results.