论文标题
用于多端网络集成传感和通信的协调发射光束形成
Coordinated Transmit Beamforming for Multi-antenna Network Integrated Sensing and Communication
论文作者
论文摘要
本文研究了一个多ANTENNA网络集成感应和通信(ISAC)系统,其中一组多个Antenna基站(BSS)采用协调的发送光束成型,以分别服务于其相关的单人体通信使用者(CUS),并在同一时间重复使用反射的信息信号以执行关节目标检测。特别是,我们根据BSS之间的时间同步考虑了两个目标检测方案。在方案\ uppercase \ ExpandAfter {\ romannumeral1}中,这些BSS已同步,可以在直接链接(从每个BS到目标到本身)和交叉链接(从每个BS到目标到目标BSS)上的直接链接上利用目标反射的信号,以进行关节检测。在方案\ uppercase \ ExpandAfter {\ romannumeral2}中,这些BS不同步,并且只能在直接链接上利用目标反射信号进行关节检测。对于每种情况,我们在任何给定目标位置的特定错误警报概率下得出检测概率。基于推导,我们优化了BSS处的协调发射光束形成,以最大程度地提高特定目标区域上的最小检测概率,同时确保在CUS处的最小信噪比 - 与噪声比率(SINR)约束,并且在BSS处受最大发射功率约束。我们使用半明确松弛(SDR)技术来为法式问题获得高质量的解决方案。数值结果表明,在每种情况下,所提出的设计比基于通信设计的基准方案实现了更高的检测概率。还表明,随着更多反射的信号路径的利用,BSS之间的时间同步有益于增强检测性能。
This paper studies a multi-antenna network integrated sensing and communication (ISAC) system, in which a set of multi-antenna base stations (BSs) employ the coordinated transmit beamforming to serve their respectively associated single-antenna communication users (CUs), and at the same time reuse the reflected information signals to perform joint target detection. In particular, we consider two target detection scenarios depending on the time synchronization among BSs. In Scenario \uppercase\expandafter{\romannumeral1}, these BSs are synchronized and can exploit the target-reflected signals over both the direct links (from each BS to target to itself) and the cross links (from each BS to target to other BSs) for joint detection. In Scenario \uppercase\expandafter{\romannumeral2}, these BSs are not synchronized and can only utilize target-reflected signals over the direct links for joint detection. For each scenario, we derive the detection probability under a specific false alarm probability at any given target location. Based on the derivation, we optimize the coordinated transmit beamforming at the BSs to maximize the minimum detection probability over a particular target area, while ensuring the minimum signal-to-interference-plus-noise ratio (SINR) constraints at the CUs, subject to the maximum transmit power constraints at the BSs. We use the semi-definite relaxation (SDR) technique to obtain highly-quality solutions to the formulated problems. Numerical results show that for each scenario, the proposed design achieves higher detection probability than the benchmark scheme based on communication design. It is also shown that the time synchronization among BSs is beneficial in enhancing the detection performance as more reflected signal paths are exploited.