论文标题

几次射击对象检测的空间推理

Spatial Reasoning for Few-Shot Object Detection

论文作者

Kim, Geonuk, Jung, Hong-Gyu, Lee, Seong-Whan

论文摘要

尽管现代对象探测器在很大程度上依赖大量的训练数据,但人类可以使用一些训练示例轻松地检测新对象。人类视觉系统的机制是解释各种对象之间的空间关系,并且此过程使我们能够通过考虑对象的共发生来利用上下文信息。因此,我们提出了一个空间推理框架,该框架在上下文中只有几个培训示例来检测新的对象。我们推断出新颖的ROI和基本ROI之间的几何相关性(利益区域),以使用对基础类别训练有素的对象探测器来增强新类别的特征表示。我们使用图形卷积网络,因为ROI及其相关性分别定义为节点和边缘。此外,我们提出了空间数据的增加,以克服几弹性环境,其中随机调整了图像中所有对象和边界框。使用Pascal VOC和MS可可数据集,我们证明了所提出的方法显着优于最新方法,并通过广泛的消融研究来验证其功效。

Although modern object detectors rely heavily on a significant amount of training data, humans can easily detect novel objects using a few training examples. The mechanism of the human visual system is to interpret spatial relationships among various objects and this process enables us to exploit contextual information by considering the co-occurrence of objects. Thus, we propose a spatial reasoning framework that detects novel objects with only a few training examples in a context. We infer geometric relatedness between novel and base RoIs (Region-of-Interests) to enhance the feature representation of novel categories using an object detector well trained on base categories. We employ a graph convolutional network as the RoIs and their relatedness are defined as nodes and edges, respectively. Furthermore, we present spatial data augmentation to overcome the few-shot environment where all objects and bounding boxes in an image are resized randomly. Using the PASCAL VOC and MS COCO datasets, we demonstrate that the proposed method significantly outperforms the state-of-the-art methods and verify its efficacy through extensive ablation studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源