论文标题

使用有限自动机验证和解释神经网络

Verifying And Interpreting Neural Networks using Finite Automata

论文作者

Sälzer, Marco, Alsmann, Eric, Bruse, Florian, Lange, Martin

论文摘要

鉴于它们在应用程序中的无处不在,包括安全性及其黑盒性质,验证属性并解释深神经网络(DNN)的行为是一项重要任务。我们提出了一种自动化方法,以解决DNN分析中引起的问题。我们表明,DNN的投入输出行为可以通过(特殊的)弱的Büchi自动机精确捕获,我们展示了如何使用这些行为来解决DNN的常见验证和解释任务,例如对抗性鲁棒性或最低足够的原因。

Verifying properties and interpreting the behaviour of deep neural networks (DNN) is an important task given their ubiquitous use in applications, including safety-critical ones, and their black-box nature. We propose an automata-theoric approach to tackling problems arising in DNN analysis. We show that the input-output behaviour of a DNN can be captured precisely by a (special) weak Büchi automaton and we show how these can be used to address common verification and interpretation tasks of DNN like adversarial robustness or minimum sufficient reasons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源