论文标题
完整的第三次Parelevé超越者的椭圆渐近学
Elliptic asymptotics for the complete third Painlevé transcendents
论文作者
论文摘要
对于完整类型的第三次Parelevé方程的一般解决方案,我们显示了无穷大点附近的Boutroux Ansatz。它承认,沿通用方向的奶酪样条中的雅各比(Jacobi SN)功能在jacobi SN功能方面承认。该表达是通过使用该类型的第三个Painlevé方程控制的线性系统的异构体畸形来得出的。在我们对WKB分析的计算中,经过处理的Stokes曲线范围在两个薄板的Riemann表面的上层和下板上。
For a general solution of the third Painlevé equation of complete type we show the Boutroux ansatz near the point at infinity. It admits an asymptotic representation in terms of the Jacobi sn-function in cheese-like strips along generic directions. The expression is derived by using isomonodromy deformation of a linear system governed by the third Painlevé equation of this type. In our calculation of the WKB analysis, the treated Stokes curve ranges on both upper and lower sheets of the two sheeted Riemann surface.