论文标题
N事实同步的代数
Algebra of N-event synchronization
论文作者
论文摘要
我们以前已将同步(Gomez,E。和K. Schubert 2011)定义为一对事件发生的时代之间的关系,并引入了一个代数,该代数涵盖了此类成对的所有可能关系。在这项工作中,我们介绍了同步矩阵,以使计算$ n $事件同步的属性和结果变得更加容易,例如在多个过程的并行执行中通常会遇到。同步矩阵导致N事实同步代数作为原始代数的特定扩展。我们得出了这种同步的一般属性,我们能够分析同步对(Gomez e Kai R,Schubert KE 2017)引入的并行执行相位空间的影响。
We have previously defined synchronization (Gomez, E. and K. Schubert 2011) as a relation between the times at which a pair of events can happen, and introduced an algebra that covers all possible relations for such pairs. In this work we introduce the synchronization matrix, to make it easier to calculate the properties and results of $N$ event synchronizations, such as are commonly encountered in parallel execution of multiple processes. The synchronization matrix leads to the definition of N-event synchronization algebras as specific extensions to the original algebra. We derive general properties of such synchronization, and we are able to analyze effects of synchronization on the phase space of parallel execution introduced in (Gomez E Kai R, Schubert KE 2017)