论文标题
量刚度和代数转移
Volume rigidity and algebraic shifting
论文作者
论文摘要
我们研究$(D-1)$ - 尺寸简单复合物中的通用体积刚度,在$ \ Mathbb r^{d-1} $中,并表明可以根据其外部变化来识别复合物的体积刚度。此外,我们确定了几个$ 2 $维表面的三角形的体积刚度,并证明,在所有维度上,$> 1 $,体积刚度为{\ em not},其特征是相应的超透明宽松属性。
We study the generic volume rigidity of $(d-1)$-dimensional simplicial complexes in $\mathbb R^{d-1}$, and show that the volume rigidity of a complex can be identified in terms of its exterior shifting. In addition, we establish the volume rigidity of triangulations of several $2$-dimensional surfaces and prove that, in all dimensions $>1$, volume rigidity is {\em not} characterized by a corresponding hypergraph sparsity property.