论文标题

专家的上下文混合:将知识整合到预测建模中

Contextual Mixture of Experts: Integrating Knowledge into Predictive Modeling

论文作者

Souza, Francisco, Offermans, Tim, Barendse, Ruud, Postma, Geert, Jansen, Jeroen

论文摘要

这项工作提出了一个新的数据驱动模型,该模型设计为将过程知识整合到其结构中,以增加过程行业的人机协同作用。拟议的专家(CMOE)的上下文混合物明确使用沿模型学习阶段的过程知识来塑造历史数据,以通过可能性分布来代表与过程相关的操作员的上下文。在两个实例研究中评估了该模型的质量预测,包括硫恢复单元和聚合过程。在两个实验中,都采用了专家的上下文混合物来表示不同的上下文。结果表明,整合过程知识可以提高预测性能,同时通过提供影响流程不同制度的变量来提高可解释性。

This work proposes a new data-driven model devised to integrate process knowledge into its structure to increase the human-machine synergy in the process industry. The proposed Contextual Mixture of Experts (cMoE) explicitly uses process knowledge along the model learning stage to mold the historical data to represent operators' context related to the process through possibility distributions. This model was evaluated in two real case studies for quality prediction, including a sulfur recovery unit and a polymerization process. The contextual mixture of experts was employed to represent different contexts in both experiments. The results indicate that integrating process knowledge has increased predictive performance while improving interpretability by providing insights into the variables affecting the process's different regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源