论文标题

贝叶斯参数推断,用于部分观察到的部分由布朗运动驱动的SDE

Bayesian Parameter Inference for Partially Observed SDEs driven by Fractional Brownian Motion

论文作者

Maama, Mohamed, Jasra, Ajay, Ombao, Hernando

论文摘要

在本文中,我们考虑了部分观察到的分数布朗运动(FBM)模型的贝叶斯参数推断。我们遵循的方法是将隐藏的过程限制,然后设计Markov Chain Monte Carlo(MCMC)算法,以从给定数据的参数上的后密度进行采样。我们依赖于时间离散化的新颖表示,该表示旨在从后部的近似值中取样,然后通过重要性采样来纠正; O(t)将近似值减少(根据总观察时间t)。通过使用多级MCMC方法扩展此方法,该方法可以降低计算成本以达到给定的平方误差(MSE),而不是使用单个时间离散化。我们的方法在模拟和真实数据上进行了说明。

In this paper we consider Bayesian parameter inference for partially observed fractional Brownian motion (fBM) models. The approach we follow is to time-discretize the hidden process and then to design Markov chain Monte Carlo (MCMC) algorithms to sample from the posterior density on the parameters given data. We rely on a novel representation of the time discretization, which seeks to sample from an approximation of the posterior and then corrects via importance sampling; the approximation reduces the time (in terms of total observation time T) by O(T). This method is extended by using a multilevel MCMC method which can reduce the computational cost to achieve a given mean square error (MSE) versus using a single time discretization. Our methods are illustrated on simulated and real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源