论文标题
Gram-X:使用爱因斯坦工具包的新的GPU加速动力时空GRMHD代码
GRaM-X: A new GPU-accelerated dynamical spacetime GRMHD code for Exascale computing with the Einstein Toolkit
论文作者
论文摘要
我们介绍了GRAM-X(AMREX上的一般相对论加速磁流失动力学),这是一种新的GPU加速动力学天际时期的一般相对论磁性水力学(GRMHD)代码,扩展了Einstein Toolkit to GPU基于GPU的Exascale Exascale Exascale系统的GRMHD功能。 GRAM-X通过Einstein工具包的新AMR驱动程序在GPU上支持3D自适应网状精炼(AMR),该工具包称为Carpetx,这反过来又利用了AMREX,这是美国DOE的Exascale Computing Project(ECP)开发的AMR库。我们使用Z4C形式主义来发展GR和Valencia配方的方程,以发展GRMHD的方程。 GRAM-X支持分析和表的状态方程。我们实施TVD和WENO重建方法以及HLLE Riemann求解器。我们使用静态空间的一系列测试测试代码的准确性,例如1D MHD冲击器,2D磁性转子和圆柱爆炸以及动态空间,即3D TOV恒星的振荡。我们发现与文献中报道的其他代码的分析结果和结果非常吻合。我们还执行缩放测试,发现GRAM-X在2304个节点(13824 NVIDIA V100 GPU)上显示了$ \ sim 40-50 \%$ $ \ sim 40-50 \%$,相对于OLCF的SuperCof的SuperComputer Summit上的单节点性能。
We present GRaM-X (General Relativistic accelerated Magnetohydrodynamics on AMReX), a new GPU-accelerated dynamical-spacetime general relativistic magnetohydrodynamics (GRMHD) code which extends the GRMHD capability of Einstein Toolkit to GPU-based exascale systems. GRaM-X supports 3D adaptive mesh refinement (AMR) on GPUs via a new AMR driver for the Einstein Toolkit called CarpetX which in turn leverages AMReX, an AMR library developed for use by the United States DOE's Exascale Computing Project (ECP). We use the Z4c formalism to evolve the equations of GR and the Valencia formulation to evolve the equations of GRMHD. GRaM-X supports both analytic as well as tabulated equations of state. We implement TVD and WENO reconstruction methods as well as the HLLE Riemann solver. We test the accuracy of the code using a range of tests on static spacetime, e.g. 1D MHD shocktubes, the 2D magnetic rotor and a cylindrical explosion, as well as on dynamical spacetimes, i.e. the oscillations of a 3D TOV star. We find excellent agreement with analytic results and results of other codes reported in literature. We also perform scaling tests and find that GRaM-X shows a weak scaling efficiency of $\sim 40-50\%$ on 2304 nodes (13824 NVIDIA V100 GPUs) with respect to single-node performance on OLCF's supercomputer Summit.