论文标题
自适应选择最佳策略以提高随机试验的精度和权力
Adaptive Selection of the Optimal Strategy to Improve Precision and Power in Randomized Trials
论文作者
论文摘要
Benkeser等。证明在随机试验中对基线协变量的调整如何有意义地提高各种结果类型的精度。他们的发现建立在悠久的历史上,从1932年与R.A.开始。费舍尔(Fisher),包括美国食品和药物管理局和欧洲药品局的最新认可。在这里,我们解决了一个重要的实际考虑: *如何 *选择调整方法(哪些变量和哪种形式),以最大程度地提高精度,同时维护I型错误控制。 Balzer等。先前提出的 *自适应预定性 *在TMLE内部灵活,自动从预先指定的集合中选择该方法在小型试验中最大化经验效率(n $ <$ 40)。为了避免使用少量随机单元过度拟合,选择以前仅限于工作的通用线性模型,从而调整了单个协变量。现在,我们针对具有许多随机单位的试验量身定制预定。我们使用$ v $ - 折叠式验证和估计的影响曲线平方作为损失功能,我们从一组扩展的候选人集中进行选择,包括对多个协变量调整的现代机器学习方法。正如探索各种数据生成过程的模拟中所评估的那样,我们的方法维持I型误差控制(在零下),并精确地提供了可观的增长 - 相当于相同统计功率的样本量的20-43 \%降低。当应用于ACTG研究175的真实数据时,我们还可以看到总体和子组内的有意义的提高。
Benkeser et al. demonstrate how adjustment for baseline covariates in randomized trials can meaningfully improve precision for a variety of outcome types. Their findings build on a long history, starting in 1932 with R.A. Fisher and including more recent endorsements by the U.S. Food and Drug Administration and the European Medicines Agency. Here, we address an important practical consideration: *how* to select the adjustment approach -- which variables and in which form -- to maximize precision, while maintaining Type-I error control. Balzer et al. previously proposed *Adaptive Prespecification* within TMLE to flexibly and automatically select, from a prespecified set, the approach that maximizes empirical efficiency in small trials (N$<$40). To avoid overfitting with few randomized units, selection was previously limited to working generalized linear models, adjusting for a single covariate. Now, we tailor Adaptive Prespecification to trials with many randomized units. Using $V$-fold cross-validation and the estimated influence curve-squared as the loss function, we select from an expanded set of candidates, including modern machine learning methods adjusting for multiple covariates. As assessed in simulations exploring a variety of data generating processes, our approach maintains Type-I error control (under the null) and offers substantial gains in precision -- equivalent to 20-43\% reductions in sample size for the same statistical power. When applied to real data from ACTG Study 175, we also see meaningful efficiency improvements overall and within subgroups.