论文标题

从微观模型中学习宏观内部变量和历史依赖性

Learning macroscopic internal variables and history dependence from microscopic models

论文作者

Liu, Burigede, Ocegueda, Eric, Trautner, Margaret, Stuart, Andrew M., Bhattacharya, Kaushik

论文摘要

本文涉及在两个尺度环境中对异质材料中历史依赖现象的研究,在这种情况下,该材料的异质性的精细显微镜尺度比施用的粗大宏观尺度小得多。我们特别研究了多晶介质,其中每种晶粒都由晶体可塑性控制,而固体受到宏观动态载荷的影响。均质化理论使我们能够直接通过构成关系来解决宏观问题,该关系由微观问题的解决方案隐含地定义。但是,均质化导致宏观上的高度复杂的历史依赖性,这与微观统计数字可能完全不同。在本文中,我们研究了通过反复求解更精细的尺度模型来利用机器学习,尤其是深神经网络的使用,以利用:(i)获得对历史依赖性和控制整体响应的宏观内部变量的见解; (ii)创建其解决方案运算符的计算有效替代,可以直接在更粗的尺度上使用,而无需进一步建模。我们通过引入经常性神经操作员(RNO)来做到这一点,并证明:(i)体系结构和学习的内部变量可以提供对宏观问题物理学的见解; (ii)RNO可以提供多尺度,特别是FE2的精度,其成本与常规经验构成关系相当。

This paper concerns the study of history dependent phenomena in heterogeneous materials in a two-scale setting where the material is specified at a fine microscopic scale of heterogeneities that is much smaller than the coarse macroscopic scale of application. We specifically study a polycrystalline medium where each grain is governed by crystal plasticity while the solid is subjected to macroscopic dynamic loads. The theory of homogenization allows us to solve the macroscale problem directly with a constitutive relation that is defined implicitly by the solution of the microscale problem. However, the homogenization leads to a highly complex history dependence at the macroscale, one that can be quite different from that at the microscale. In this paper, we examine the use of machine-learning, and especially deep neural networks, to harness data generated by repeatedly solving the finer scale model to: (i) gain insights into the history dependence and the macroscopic internal variables that govern the overall response; and (ii) to create a computationally efficient surrogate of its solution operator, that can directly be used at the coarser scale with no further modeling. We do so by introducing a recurrent neural operator (RNO), and show that: (i) the architecture and the learned internal variables can provide insight into the physics of the macroscopic problem; and (ii) that the RNO can provide multiscale, specifically FE2, accuracy at a cost comparable to a conventional empirical constitutive relation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源