论文标题
使用双变压器进行药物反应预测的更好模型
Towards a Better Model with Dual Transformer for Drug Response Prediction
论文作者
论文摘要
近年来,基于GNN的方法已成为药物反应预测任务的主流任务。传统的GNN方法仅使用药物分子中的原子作为节点来通过节点信息传递来获得分子图的表示,而使用变压器的方法只能提取有关节点的信息。但是,药物分子的共价键和手性对分子的药理特性有很大影响,并且这些信息在原子之间的边缘形成的化学键中暗示。另外,用于建模细胞系基因组序列的CNN方法只能感知局部的局部信息,而不是有关序列的全局信息。为了解决上述问题,我们提出了具有嵌入式药物反应预测的脱钩的双变压器结构(TransEDRP),该预测分别用于表示细胞系基因组学和药物。对于药物分支,我们使用图形变压器将分子图中的化学键信息编码为分子图中边缘的嵌入,并提取了药物分子的全局结构和生化信息。对于细胞系基因组学的分支,我们使用多头注意机制代表基因组学序列。最后,将药物和基因组分支融合在一起,以通过变压器层和完全连接的层预测IC50值,两个分支是不同的模态。广泛的实验表明,在所有评估指标中,我们的方法比当前的主流方法更好。
GNN-based methods have achieved excellent results as a mainstream task in drug response prediction tasks in recent years. Traditional GNN methods use only the atoms in a drug molecule as nodes to obtain the representation of the molecular graph through node information passing, whereas the method using the transformer can only extract information about the nodes. However, the covalent bonding and chirality of a drug molecule have a great influence on the pharmacological properties of the molecule, and these information are implied in the chemical bonds formed by the edges between the atoms. In addition, CNN methods for modelling cell lines genomics sequences can only perceive local rather than global information about the sequence. In order to solve the above problems, we propose the decoupled dual transformer structure with edge embedded for drug respond prediction (TransEDRP), which is used for the representation of cell line genomics and drug respectively. For the drug branch, we encoded the chemical bond information within the molecule as the embedding of the edge in the molecular graph, extracted the global structural and biochemical information of the drug molecule using graph transformer. For the branch of cell lines genomics, we use the multi-headed attention mechanism to globally represent the genomics sequence. Finally, the drug and genomics branches are fused to predict IC50 values through the transformer layer and the fully connected layer, which two branches are different modalities. Extensive experiments have shown that our method is better than the current mainstream approach in all evaluation indicators.