论文标题

关于微分方程的混合迭代数值求解器的几何可传递性

On the Geometry Transferability of the Hybrid Iterative Numerical Solver for Differential Equations

论文作者

Kahana, Adar, Zhang, Enrui, Goswami, Somdatta, Karniadakis, George EM, Ranade, Rishikesh, Pathak, Jay

论文摘要

快速数值求解器的发现促使在许多应用中,尤其是在计算机制中的迭代技术明确而快速的转变,因为解决了非常大的线性系统的必要性增加。大多数数值求解器高度取决于问题的几何形状和离散化,当这些属性中的任何一个都面临问题。新开发的混合迭代迭代的可转移求解器(提示)将标准求解器与神经操作员结合在一起,以实现更好的性能,一次重点是一次几何。在这项工作中,我们在提示中探讨了“ t”,即提示的几何可传递性能。我们首先建议直接采用为特定几何形状构建的提示,以实现不同但相关的几何形状,而无需进行任何调整。此外,我们提出了将操作员级别传输学习与提示的集成,以进一步提高有关新几何和离散化的提示。我们对达西流问题和平面应变弹性问题进行数值实验。结果表明,提示的直接应用和转移学习增强的提示都能够准确地解决不同几何形状的这些问题。此外,使用转移学习,提示能够比直接应用提示更快地收敛到机器零。

The discovery of fast numerical solvers prompted a clear and rapid shift towards iterative techniques in many applications, especially in computational mechanics, due to the increased necessity for solving very large linear systems. Most numerical solvers are highly dependent on the problem geometry and discretization, facing issues when any of these properties change. The newly developed Hybrid Iterative Numerical Transferable Solver (HINTS) combines a standard solver with a neural operator to achieve better performance, focusing on a single geometry at a time. In this work, we explore the "T" in HINTS, i.e., the geometry transferability properties of HINTS. We first propose to directly employ HINTS built for a specific geometry to a different but related geometry without any adjustments. In addition, we propose the integration of an operator level transfer learning with HINTS to even further improve the convergence of HINTS on new geometries and discretizations. We conduct numerical experiments for a Darcy flow problem and a plane-strain elasticity problem. The results show that both the direct application of HINTS and the transfer learning enhanced HINTS are able to accurately solve these problems on different geometries. In addition, using transfer learning, HINTS is able to converge to machine zero even faster than the direct application of HINTS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源