论文标题

人口单调分配方案的分配游戏

Assignment games with population monotonic allocation schemes

论文作者

Solymosi, Tamás

论文摘要

我们表征了分配游戏,该游戏以诱导游戏的非负矩阵的有效验证结构属性来接受人口单调分配方案(PMA)。我们证明,当且仅当三种特殊类型的基础非负矩阵形式正交形式正交形式的正交形式的正交形式的正面元素的正面元素时,我们就证明了一个任务游戏是PMA上的。在游戏理论术语中,这意味着当且仅当它包含否决权玩家或主要的否决配对或由这两种类型的特殊任务游戏中组成时,任务游戏是PMA上的。我们还表明,在PMAS受欢迎的任务游戏中,所有核心分配都可以扩展到PMA,而核仁与Tau-Value相吻合。

We characterize the assignment games which admit a population monotonic allocation scheme (PMAS) in terms of efficiently verifiable structural properties of the nonnegative matrix that induces the game. We prove that an assignment game is PMAS-admissible if and only if the positive elements of the underlying nonnegative matrix form orthogonal submatrices of three special types. In game theoretic terms it means that an assignment game is PMAS-admissible if and only if it contains a veto player or a dominant veto mixed pair or is composed of from these two types of special assignment games. We also show that in a PMAS-admissible assignment game all core allocations can be extended to a PMAS, and the nucleolus coincides with the tau-value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源