论文标题
可控交通模拟的有条件扩散
Guided Conditional Diffusion for Controllable Traffic Simulation
论文作者
论文摘要
可控和现实的交通模拟对于开发和验证自动驾驶汽车至关重要。典型的基于启发式的交通模型提供灵活的控制,以使车辆遵循特定的轨迹和交通规则。另一方面,数据驱动的方法会产生现实和类似人类的行为,从而改善了从模拟到现实世界流量的转移。但是,据我们所知,没有交通模型既可以提供可控性和现实主义。在这项工作中,我们为可控的流量产生(CTG)开发了有条件的扩散模型,该模型允许用户在测试时控制轨迹的所需属性(例如,达到目标或遵循速度限制),同时通过强制执行动态来维持现实主义和物理可行性。关键的技术思想是利用扩散建模和可区分逻辑的最新进展来指导生成的轨迹,以满足使用信号时间逻辑(STL)定义的规则。我们进一步将指导扩展到多代理设置,并启用基于交互的规则,例如避免碰撞。在Nuscenes数据集上对CTG进行了广泛的评估,以实现各种综合规则,从而在可控性真实性权衡方面表明了强大基准的改善。
Controllable and realistic traffic simulation is critical for developing and verifying autonomous vehicles. Typical heuristic-based traffic models offer flexible control to make vehicles follow specific trajectories and traffic rules. On the other hand, data-driven approaches generate realistic and human-like behaviors, improving transfer from simulated to real-world traffic. However, to the best of our knowledge, no traffic model offers both controllability and realism. In this work, we develop a conditional diffusion model for controllable traffic generation (CTG) that allows users to control desired properties of trajectories at test time (e.g., reach a goal or follow a speed limit) while maintaining realism and physical feasibility through enforced dynamics. The key technical idea is to leverage recent advances from diffusion modeling and differentiable logic to guide generated trajectories to meet rules defined using signal temporal logic (STL). We further extend guidance to multi-agent settings and enable interaction-based rules like collision avoidance. CTG is extensively evaluated on the nuScenes dataset for diverse and composite rules, demonstrating improvement over strong baselines in terms of the controllability-realism tradeoff.