论文标题
在人类驾驶行为的示例中,验证目标定向的人类运动的随机最佳控制模型
Validation of Stochastic Optimal Control Models for Goal-Directed Human Movements on the Example of Human Driving Behavior
论文作者
论文摘要
随机最佳控制模型代表建模目标指导的人类运动的最新模型。基于状态和输出方程中信号依赖性噪声过程的线性季度感觉运动(LQS)模型是当前的主要代表。通过在两个双级优化的基础上构建我们新引入的逆随机最佳控制算法,我们可以首次确定其未知模型参数,即成本函数矩阵和缩放参数。在本文中,我们使用该算法来识别确定性线性季度,线性季度高斯和来自人类测量数据的LQS模型的参数,以比较模型在描述目标定向人类运动方面的能力。在简化的驾驶任务中,人类转向行为具有与点点对点手的相似特征,这是我们的示例运动。结果表明,确定的LQS模型的表现优于其他模型,其统计学意义。特别是,通过LQS模型对人类平均转向行为的建模更好。这验证了信号依赖性噪声过程对建模人类平均行为的积极影响。
Stochastic Optimal Control models represent the state-of-the-art in modeling goal-directed human movements. The linear-quadratic sensorimotor (LQS) model based on signal-dependent noise processes in state and output equation is the current main representative. With our newly introduced Inverse Stochastic Optimal Control algorithm building upon two bi-level optimizations, we can identify its unknown model parameters, namely cost function matrices and scaling parameters of the noise processes, for the first time. In this paper, we use this algorithm to identify the parameters of a deterministic linear-quadratic, a linear-quadratic Gaussian and a LQS model from human measurement data to compare the models' capability in describing goal-directed human movements. Human steering behavior in a simplified driving task shown to posses similar features as point-ot-point human hand reaching movements serves as our example movement. The results show that the identified LQS model outperforms the others with statistical significance. Particularly, the average human steering behavior is modeled significantly better by the LQS model. This validates the positive impact of signal-dependent noise processes on modeling human average behavior.