论文标题

基于高斯工艺的深层多余性贝叶斯优化用于模拟化学反应器

Deep Gaussian Process-based Multi-fidelity Bayesian Optimization for Simulated Chemical Reactors

论文作者

Savage, Tom, Basha, Nausheen, Matar, Omar, Chanona, Ehecatl Antonio Del-Rio

论文摘要

新的制造技术(例如3D打印)最近使创建了以前不可行的化学反应堆设计。优化下一代化学反应堆的几何形状对于了解潜在物理学并确保反应器的可行性很重要。这个优化问题在计算上是昂贵的,非线性和无衍生化的问题,因此解决方案具有挑战性。在这项工作中,我们将深层流程(DGP)应用于贝叶斯优化设置中的多余盘绕管反应器模拟。通过应用多保真贝叶斯优化方法,通过不同的保真度仿真的汞合金来探索反应堆几何形状的搜索空间,这些杂志是根据预测不确定性和仿真成本选择的,从而最大程度地利用了计算预算。 DGP的使用为五个离散的网格保真度提供了端到端模型,从而减少了计算工作,以在优化期间获得良好的解决方案。这五个保真度的模拟准确性是根据从3D打印反应器配置获得的实验数据确定的,从而提供了对适当的超参数的见解。我们希望这项工作为基于DGP的多余贝叶斯优化进行工程发现提供了有趣的见解。

New manufacturing techniques such as 3D printing have recently enabled the creation of previously infeasible chemical reactor designs. Optimizing the geometry of the next generation of chemical reactors is important to understand the underlying physics and to ensure reactor feasibility in the real world. This optimization problem is computationally expensive, nonlinear, and derivative-free making it challenging to solve. In this work, we apply deep Gaussian processes (DGPs) to model multi-fidelity coiled-tube reactor simulations in a Bayesian optimization setting. By applying a multi-fidelity Bayesian optimization method, the search space of reactor geometries is explored through an amalgam of different fidelity simulations which are chosen based on prediction uncertainty and simulation cost, maximizing the use of computational budget. The use of DGPs provides an end-to-end model for five discrete mesh fidelities, enabling less computational effort to gain good solutions during optimization. The accuracy of simulations for these five fidelities is determined against experimental data obtained from a 3D printed reactor configuration, providing insights into appropriate hyper-parameters. We hope this work provides interesting insight into the practical use of DGP-based multi-fidelity Bayesian optimization for engineering discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源