论文标题

置信网:小数据集上回归神经网络的更好预测间隔的一步

Confidence-Nets: A Step Towards better Prediction Intervals for regression Neural Networks on small datasets

论文作者

Altayeb, Mohamedelmujtaba, Elamin, Abdelrahman M., Ahmed, Hozaifa, Ibrahim, Eithar Elfatih Elfadil, Haydar, Omer, Abdulaziz, Saba, Mohamed, Najlaa H. M.

论文摘要

最近的十年中,深度学习和神经网络的流行幅度巨大。这些算法打破了许多以前的记录,并取得了显着的结果。他们出色的表现大大加剧了AI的进步,到目前为止,已经比预期的要早得多。但是,在相对较小的数据集的情况下,与其他机器学习模型相比,深度神经网络(DNN)的性能可能会降低准确性。此外,在处理回归任务时,很难构建预测间隔或评估预测的不确定性。在本文中,我们提出了一种合奏方法,该方法试图估计预测的不确定性,提高其准确性并为预期变化提供间隔。与仅提供预测的传统DNN相比,我们提出的方法可以通过组合DNN,极端梯度增强(XGBOOST)和相似性计算技术来输出预测间隔。尽管是简单的设计,但这种方法可显着提高小数据集的精度,并且对神经网络的体系结构没有太大的复杂性。在各种数据集上测试了所提出的方法,并可以看到神经网络模型的性能有显着改善。该模型的预测间隔可以分别以90%和55%的训练尺寸为71%和78%的平均速率包括地面真实价值。最后,我们强调了该方法在实验误差估计中的其他方面和应用,以及转移学习的应用。

The recent decade has seen an enormous rise in the popularity of deep learning and neural networks. These algorithms have broken many previous records and achieved remarkable results. Their outstanding performance has significantly sped up the progress of AI, and so far various milestones have been achieved earlier than expected. However, in the case of relatively small datasets, the performance of Deep Neural Networks (DNN) may suffer from reduced accuracy compared to other Machine Learning models. Furthermore, it is difficult to construct prediction intervals or evaluate the uncertainty of predictions when dealing with regression tasks. In this paper, we propose an ensemble method that attempts to estimate the uncertainty of predictions, increase their accuracy and provide an interval for the expected variation. Compared with traditional DNNs that only provide a prediction, our proposed method can output a prediction interval by combining DNNs, extreme gradient boosting (XGBoost) and dissimilarity computation techniques. Albeit the simple design, this approach significantly increases accuracy on small datasets and does not introduce much complexity to the architecture of the neural network. The proposed method is tested on various datasets, and a significant improvement in the performance of the neural network model is seen. The model's prediction interval can include the ground truth value at an average rate of 71% and 78% across training sizes of 90% and 55%, respectively. Finally, we highlight other aspects and applications of the approach in experimental error estimation, and the application of transfer learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源