论文标题
收缩不平等和色数
Systolic inequalities and chromatic number
论文作者
论文摘要
我们表明,从下面估算简单复合物的顶点数量的收缩不平等的离散版本对图(一维简单复合物)具有实质性应用。它们几乎直接地提供了图形顶点数量的良好估计,其色数和最小奇数周期的长度。结合Berlov和Bogdanov的图理论技术,收缩期方法可产生更好的估计。
We show that the discrete versions of the systolic inequality that estimate the number of vertices of a simplicial complex from below have substantial applications to graphs, the one-dimensional simplicial complexes. Almost directly they provide good estimates for the number of vertices of a graph in terms of its chromatic number and the length of the smallest odd cycle. Combined with the graph-theoretic techniques of Berlov and Bogdanov, the systolic approach produces even better estimates.