论文标题
相对自动型D模块的正则化
Regularization of relative holonomic D-modules
论文作者
论文摘要
令$ x $和$ s $为复杂的分析歧管,其中$ s $扮演参数空间的角色。 Using the sheaf $\DXS^{\infty}$ of relative differential operators of infinite order, we construct functorially the regular holonomic $\DXS$-module $\shm_{reg}$ associated to a relative holonomic $\DXS$-module $\shm$, extending to the relative case classical theorems by Kashiwara-Kawai: denoting by $ \ shm^{\ infty} $由$ \ shm $ by $ \ dxs^{\ infty} $ themlicit $ \ shm^{\ shm^{\ shm^{\ shm^{\ infty} $都以$ \ shm $的全态解决方案而言,$ \ shm $ and prove $ \ shm_ {reg}^{\ infty} $是同构。
Let $X$ and $S$ be complex analytic manifolds where $S$ plays the role of a parameter space. Using the sheaf $\DXS^{\infty}$ of relative differential operators of infinite order, we construct functorially the regular holonomic $\DXS$-module $\shm_{reg}$ associated to a relative holonomic $\DXS$-module $\shm$, extending to the relative case classical theorems by Kashiwara-Kawai: denoting by $\shm^{\infty}$ the tensor product of $\shm$ by $\DXS^{\infty}$ we explicit $\shm^{\infty}$ in terms of the sheaf of holomorphic solutions of $\shm$ and prove that $\shm^{\infty}$ and $\shm_{reg}^{\infty}$ are isomorphic.