论文标题

多个$ t $ - 价值的关系

Relations of multiple $t$-values of general level

论文作者

Li, Zhonghua, Wang, Zhenlu

论文摘要

我们研究了多个$ t $值的一般水平的关系。多个$ t $ - (star)级别$ n $具有固定重量,深度和高度的级别的总和的生成函数由广义超几何函数$ _3F_2 $表示,该函数概括了多个zeta(-star)值和多个$ t $ - (star)值的结果。作为应用程序,我们获得了多个$ t $ - (star)的生成函数的公式,该函数的高度为一,高度和最大高度和加权总和公式,用于多个$ t $ - (star)级别$ n $的总和,具有固定权重和深度。使用Stuffle代数,我们还获得了对称的总和公式和Hoffman的限制性和公式,用于多个$ t $ - (star)$ n $的值。对多个$ 2 $ 2 $的多个$ T $标准值的评估,并给出了三​​二个指数。

We study the relations of multiple $t$-values of general level. The generating function of sums of multiple $t$-(star) values of level $N$ with fixed weight, depth and height is represented by the generalized hypergeometric function $_3F_2$, which generalizes the results for multiple zeta(-star) values and multiple $t$-(star) values. As applications, we obtain formulas for the generating functions of sums of multiple $t$-(star) values of level $N$ with height one and maximal height and a weighted sum formula for sums of multiple $t$-(star) values of level $N$ with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman's restricted sum formulas for multiple $t$-(star) values of level $N$. Some evaluations of multiple $t$-star values of level $2$ with one-two-three indices are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源