论文标题
使用几何代数的经典力学旋转
Rotations in classical mechanics using geometric algebra
论文作者
论文摘要
在几何代数中,使用转子描述了向量的旋转。转子是拟曲子,其中假想数已被称为单位养育器的单位区域的面向平面元件取代。在三维空间中的代数与载体和双分动物是保利代数。由标量和双分动物的线性组合组成的多生动物与四元素是同构的。旋转动力学可以完全在使用双分动物的旋转平面上表达。特别是,提供移动框架单位向量的时间衍生物的泊松公式是根据角速度双向运动的重铸,并应用于圆柱形和球形框架。点粒子和刚体的旋转动力学由转子的时间演变完全确定。角速度双向运动映射到角动量双向运动是惯性图。在刚体的主要轴框架中,惯性图的特征是代表惯性矩的对称系数。 Huygens-Steiner定理,刚体的动能和Euler方程是用双运动组分表示的。这种形式主义用于研究陀螺仪的旋转动力学。
In geometric algebra, the rotation of a vector is described using rotors. Rotors are phasors where the imaginary number has been replaced by a oriented plane element of unit area called a unit bivector. The algebra in three dimensional space relating vectors and bivectors is the Pauli algebra. Multivectors consisting of linear combinations of scalars and bivectors are isomorphic to quaternions. The rotational dynamics can be expressed entirely in the plane of rotation using bivectors. In particular, the Poisson formula providing the time derivative of the unit vectors of a moving frame are recast in terms of the angular velocity bivector and applied to cylindrical and spherical frames. The rotational dynamics of a point particle and a rigid body are fully determined by the time evolution of rotors. The mapping of the angular velocity bivector onto the angular momentum bivector is the inertia map. In the principal axis frame of the rigid body, the inertia map is characterised by symmetric coefficients representing the moments of inertia. The Huygens-Steiner theorem, the kinetic energy of a rigid body and the Euler equations are expressed in terms of bivector components. This formalism is applied to study the rotational dynamics of a gyroscope.