论文标题
STGC-GNNS:带有空间速率Granger因果关系图的基于GNN的流量预测框架
STGC-GNNs: A GNN-based traffic prediction framework with a spatial-temporal Granger causality graph
论文作者
论文摘要
交通预测的关键是要准确描述道路网络中交通流的时间动态,因此对道路网络的空间依赖性进行建模非常重要。空间依赖的本质是准确描述道路网络中其他节点的流量信息传输如何影响流量信息,而基于GNN的交通预测模型(作为交通预测的基准)已成为能够通过使用消息传递机制传输流量信息来模拟空间依赖性的最常见方法。但是,现有方法模拟了局部和静态空间依赖性,该依赖性无法传递长期预测所需的全球流量信息(GDTI)。挑战是由于个人运输的不确定性,尤其是长期传播而难以检测GDTI的精确传播。在本文中,我们提出了一个新的假设\:gdti在宏观上作为一种传播因果关系(TCR)流量流的行为,在动态变化的交通流量下保持稳定。我们进一步提出了时空granger因果关系(STGC)来表达TCR,该因素对全局和动态空间依赖性进行了建模。为了模拟全局传播,我们通过空间比对算法对TCRS全球传输的因果秩序和因果滞后进行建模。为了捕获动态空间依赖性,我们通过Granger因果关系测试近似稳定的TCR动态交通流。三个骨干模型的实验结果表明,使用STGC对空间依赖性建模的结果比原始模型更好45分钟和1小时的长期预测。
The key to traffic prediction is to accurately depict the temporal dynamics of traffic flow traveling in a road network, so it is important to model the spatial dependence of the road network. The essence of spatial dependence is to accurately describe how traffic information transmission is affected by other nodes in the road network, and the GNN-based traffic prediction model, as a benchmark for traffic prediction, has become the most common method for the ability to model spatial dependence by transmitting traffic information with the message passing mechanism. However, existing methods model a local and static spatial dependence, which cannot transmit the global-dynamic traffic information (GDTi) required for long-term prediction. The challenge is the difficulty of detecting the precise transmission of GDTi due to the uncertainty of individual transport, especially for long-term transmission. In this paper, we propose a new hypothesis\: GDTi behaves macroscopically as a transmitting causal relationship (TCR) underlying traffic flow, which remains stable under dynamic changing traffic flow. We further propose spatial-temporal Granger causality (STGC) to express TCR, which models global and dynamic spatial dependence. To model global transmission, we model the causal order and causal lag of TCRs global transmission by a spatial-temporal alignment algorithm. To capture dynamic spatial dependence, we approximate the stable TCR underlying dynamic traffic flow by a Granger causality test. The experimental results on three backbone models show that using STGC to model the spatial dependence has better results than the original model for 45 min and 1 h long-term prediction.