论文标题

基于MLP混合神经网络的多视图多标签异常网络流量分类

Multi-view Multi-label Anomaly Network Traffic Classification based on MLP-Mixer Neural Network

论文作者

Zheng, Yu, Dang, Zhangxuan, Peng, Chunlei, Yang, Chao, Gao, Xinbo

论文摘要

网络流量分类是许多网络安全应用程序的基础,并且在网络空间安全领域引起了足够的关注。基于卷积神经网络(CNN)的现有网络流量分类通常会强调流量数据的本地模式,同时忽略全球信息关联。在本文中,我们提出了一个基于MLP-MIXER的多视图多标签神经网络,用于网络流量分类。与现有的基于CNN的方法相比,我们的方法采用MLP混合结构,该结构与数据包的结构更一致,而不是常规卷积操作。在我们的方法中,将一个数据包分为数据包标头和数据包主体,以及数据包的流量作为来自不同视图的输入。我们利用多标签设置同时学习不同的方案,以利用不同方案之间的相关性来提高分类性能。利用上述特征,我们提出了一种端到端网络流量分类方法。我们在三个公共数据集上进行实验,实验结果表明我们的方法可以实现卓越的性能。

Network traffic classification is the basis of many network security applications and has attracted enough attention in the field of cyberspace security. Existing network traffic classification based on convolutional neural networks (CNNs) often emphasizes local patterns of traffic data while ignoring global information associations. In this paper, we propose an MLP-Mixer based multi-view multi-label neural network for network traffic classification. Compared with the existing CNN-based methods, our method adopts the MLP-Mixer structure, which is more in line with the structure of the packet than the conventional convolution operation. In our method, one packet is divided into the packet header and the packet body, together with the flow features of the packet as input from different views. We utilize a multi-label setting to learn different scenarios simultaneously to improve the classification performance by exploiting the correlations between different scenarios. Taking advantage of the above characteristics, we propose an end-to-end network traffic classification method. We conduct experiments on three public datasets, and the experimental results show that our method can achieve superior performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源