论文标题

通过目标感知生成增强的单发域适应

Single-Shot Domain Adaptation via Target-Aware Generative Augmentation

论文作者

Subramanyam, Rakshith, Thopalli, Kowshik, Berman, Spring, Turaga, Pavan, Thiagarajan, Jayaraman J.

论文摘要

由于深度神经网络中的脆弱性,使用任何感兴趣的目标领域的数据从源域中调整模型的问题已变得突出。尽管已经出现了几种测试时间适应技术,但在目标数据可用性有限的情况下,它们通常依赖于合成数据增加。在本文中,我们考虑了单次适应的挑战性设置,并探讨了增强策略的设计。我们认为,现有方法使用的增强不足以处理大型分配变化,因此提出了一种新方法SISTA(单杆目标增强),该方法首先使用单弹药域从源域中微调生成模型,然后采用新颖的新型采样策略来策划合成目标数据。使用具有最先进的域适应方法的实验,我们发现SISTA在面部属性检测中的挑战性转移下,SISTA的改善比现有基准的改进高达20%,并且它通过在较大的目标数据集中训练而获得的甲骨文模型竞争性。

The problem of adapting models from a source domain using data from any target domain of interest has gained prominence, thanks to the brittle generalization in deep neural networks. While several test-time adaptation techniques have emerged, they typically rely on synthetic data augmentations in cases of limited target data availability. In this paper, we consider the challenging setting of single-shot adaptation and explore the design of augmentation strategies. We argue that augmentations utilized by existing methods are insufficient to handle large distribution shifts, and hence propose a new approach SiSTA (Single-Shot Target Augmentations), which first fine-tunes a generative model from the source domain using a single-shot target, and then employs novel sampling strategies for curating synthetic target data. Using experiments with a state-of-the-art domain adaptation method, we find that SiSTA produces improvements as high as 20\% over existing baselines under challenging shifts in face attribute detection, and that it performs competitively to oracle models obtained by training on a larger target dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源