论文标题

以实体为中心的跨文档关系提取

Entity-centered Cross-document Relation Extraction

论文作者

Wang, Fengqi, Li, Fei, Fei, Hao, Li, Jingye, Wu, Shengqiong, Su, Fangfang, Shi, Wenxuan, Ji, Donghong, Cai, Bo

论文摘要

关系提取(RE)是信息提取的基本任务,它引起了大量的研究关注。先前的研究重点是提取句子或文件中的关系,而目前的研究人员开始探索跨文档。但是,当前的跨文档RE方法直接在多个给定文档中直接利用目标实体周围的文本片段,这带来了相当大的嘈杂和非相关句子。此外,他们以粗粒的方式利用文档袋中的所有文本路径,而无需考虑这些文本路径之间的连接。在本文中,我们旨在解决这两种短缺,并推动跨文档的最新时间。首先,我们专注于RE模型的输入构建,并建议通过使用文本路径中的桥梁实体在给定文档中保留有用信息,以保留有用的信息。其次,我们提出了一个基于交叉路径实体关系注意的跨文档RE模型,该模型允许跨文本路径的实体关系彼此相互作用。我们将跨文档RE方法与数据集编码中的最新方法进行比较。我们的方法在F1中的表现至少优于10%,从而表明其有效性。

Relation Extraction (RE) is a fundamental task of information extraction, which has attracted a large amount of research attention. Previous studies focus on extracting the relations within a sentence or document, while currently researchers begin to explore cross-document RE. However, current cross-document RE methods directly utilize text snippets surrounding target entities in multiple given documents, which brings considerable noisy and non-relevant sentences. Moreover, they utilize all the text paths in a document bag in a coarse-grained way, without considering the connections between these text paths.In this paper, we aim to address both of these shortages and push the state-of-the-art for cross-document RE. First, we focus on input construction for our RE model and propose an entity-based document-context filter to retain useful information in the given documents by using the bridge entities in the text paths. Second, we propose a cross-document RE model based on cross-path entity relation attention, which allow the entity relations across text paths to interact with each other. We compare our cross-document RE method with the state-of-the-art methods in the dataset CodRED. Our method outperforms them by at least 10% in F1, thus demonstrating its effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源