论文标题
在无线网络中学习最佳资源管理决策的国家调查方法
A State-Augmented Approach for Learning Optimal Resource Management Decisions in Wireless Networks
论文作者
论文摘要
我们考虑在多用户无线网络中的无线电资源管理(RRM)问题,该问题的目标是优化范围内的公用事业函数,但受到用户的Ergodic平均性能的约束。我们为RRM策略提出了一个由州增强的参数化,在该参数中,与瞬时网络状态一起,RRM策略将与约束相对应的双变量集合作为输入。我们为拟议的国家增强算法产生的RRM决策的可行性和近乎反映性提供了理论上的理由。专注于用图神经网络(GNN)参数参数的RRM策略和从双重下降动力学采样的双变量,我们数值证明所提出的方法在平均值,最小值和第5个百分位率之间取得了卓越的权衡。
We consider a radio resource management (RRM) problem in a multi-user wireless network, where the goal is to optimize a network-wide utility function subject to constraints on the ergodic average performance of users. We propose a state-augmented parameterization for the RRM policy, where alongside the instantaneous network states, the RRM policy takes as input the set of dual variables corresponding to the constraints. We provide theoretical justification for the feasibility and near-optimality of the RRM decisions generated by the proposed state-augmented algorithm. Focusing on the power allocation problem with RRM policies parameterized by a graph neural network (GNN) and dual variables sampled from the dual descent dynamics, we numerically demonstrate that the proposed approach achieves a superior trade-off between mean, minimum, and 5th percentile rates than baseline methods.