论文标题

通过部分个性化注意机制进行慢性阻塞性肺疾病分类的联合学习

Federated Learning for Chronic Obstructive Pulmonary Disease Classification with Partial Personalized Attention Mechanism

论文作者

Shen, Yiqing, Liu, Baiyun, Yu, Ruize, Wang, Yudong, Wang, Shaokang, Wu, Jiangfen, Chen, Weidao

论文摘要

慢性阻塞性肺疾病(COPD)是全球死亡的第四大原因。然而,COPD的诊断在很大程度上依赖于肺活量检查以及功能性气道限制,这可能会导致相当大的COPD患者在早期诊断的诊断不足。深度学习的最新进展(DL)表明了从CT图像中COPD识别的有希望的潜力。然而,使用异质综合症和不同表型,用一个数据中心的CT训练的DL模型无法概括来自另一个中心的图像。由于隐私的正常化,分布式CT图像与一个集中式中心的合作是不可行的。联合学习(FL)方法使我们能够使用分布式私人数据进行培训。然而,在COPD CTS不是独立且分布相同(非IID)的情况下,常规FL解决方案会遭受性能降解。为了解决这个问题,我们提出了一种基于视觉变压器(VIT)的新型个性化联合学习(PFL)方法,用于分布式和异构COPD CTS。更具体地说,我们部分个性化多头自发层中的某些头,以了解本地数据的个性化注意力,并保留其他头部共享的头脑以引起共同的关注。据我们所知,这是专门为VIT识别COPD的PFL框架的第一个建议。我们对从六个医疗中心策划的数据集的评估表明,我们的方法优于卷积神经网络的PFL方法。

Chronic Obstructive Pulmonary Disease (COPD) is the fourth leading cause of death worldwide. Yet, COPD diagnosis heavily relies on spirometric examination as well as functional airway limitation, which may cause a considerable portion of COPD patients underdiagnosed especially at the early stage. Recent advance in deep learning (DL) has shown their promising potential in COPD identification from CT images. However, with heterogeneous syndromes and distinct phenotypes, DL models trained with CTs from one data center fail to generalize on images from another center. Due to privacy regularizations, a collaboration of distributed CT images into one centralized center is not feasible. Federated learning (FL) approaches enable us to train with distributed private data. Yet, routine FL solutions suffer from performance degradation in the case where COPD CTs are not independent and identically distributed (Non-IID). To address this issue, we propose a novel personalized federated learning (PFL) method based on vision transformer (ViT) for distributed and heterogeneous COPD CTs. To be more specific, we partially personalize some heads in multiheaded self-attention layers to learn the personalized attention for local data and retain the other heads shared to extract the common attention. To the best of our knowledge, this is the first proposal of a PFL framework specifically for ViT to identify COPD. Our evaluation of a dataset set curated from six medical centers shows our method outperforms the PFL approaches for convolutional neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源