论文标题
包裹在Orbifolds及其重力块上的麸皮
Branes wrapped on orbifolds and their gravitational blocks
论文作者
论文摘要
我们构建新的超对称$ \ mathrm {ads} _2 \ times \ mathbb {m} _4 $ $ d = 6 $ d = 6 $ gauged supergravity,其中$ \ mathbb {m {m} _4 $是一定的四维orbifolds。在提升到大型IIA超级重力之后,这些对应于$ n $ d4-branes的系统的近马限制和包裹在$ \ Mathbb {M} _4 $上的$ n_f $ d8-branes。在一类解决方案中,$ \ mathbb {m} _4 =σ_ {\ mathrm {g}}} \ltimesς$是一种纺锤体,是在平稳的riemann表面上固定的,$ \ mathrm {g}> 1 $,而在另一个类别$ \ mathbb ins $ \ mathbb iib ib {m} $ \ rred a ibred fime主轴。可以将两种类都视为Hirzebruch表面的Orbifold概括,在第二种情况下,我们用曲折的几何形状描述了解决方案。我们表明,与这些溶液相关的熵是通过使用我们提出的Orbifolds的一般配方来极端化通过粘合重力块获得的熵函数来重现的。我们还讨论了我们的处方如何定义一个非壳中心费用,该费用的极端化重现了类似$ \ mathrm {ads} _3 \ times \ times \ times \ times \ times \ times \ times \ times \ times \ times \ times \ mathbb {m} _4 $ d = 7 $ d = 7 $ gauged supergravity的解决方案,由$ d = _ $ \ math Bbb cartional of Supergravity。
We construct new supersymmetric $\mathrm{AdS}_2\times \mathbb{M}_4$ solutions of $D=6$ gauged supergravity, where $\mathbb{M}_4$ are certain four-dimensional orbifolds. After uplifting to massive type IIA supergravity these correspond to the near-horizon limit of a system of $N$ D4-branes and $N_f$ D8-branes wrapped on $\mathbb{M}_4$. In one class of solutions $\mathbb{M}_4 = Σ_{\mathrm{g}}\ltimesΣ$ is a spindle fibred over a smooth Riemann surface of genus $\mathrm{g}>1$, while in another class $\mathbb{M}_4 = Σ\ltimesΣ$ is a spindle fibred over another spindle. Both classes can be thought of as orbifold generalizations of Hirzebruch surfaces and, in the second case, we describe the solutions in terms of toric geometry. We show that the entropy associated with these solutions is reproduced by extremizing an entropy function obtained by gluing gravitational blocks, using a general recipe for orbifolds that we propose. We also discuss how our prescription can be used to define an off-shell central charge whose extremization reproduces the gravitational central charge of analogous $\mathrm{AdS}_3\times \mathbb{M}_4$ solutions of $D=7$ gauged supergravity, arising from wrapping M5-branes on $\mathbb{M}_4$.