论文标题

原始细分:噪声调查的原始增强功能可以在各种环境中识别

Rawgment: Noise-Accounted RAW Augmentation Enables Recognition in a Wide Variety of Environments

论文作者

Yoshimura, Masakazu, Otsuka, Junji, Irie, Atsushi, Ohashi, Takeshi

论文摘要

在具有挑战性的环境中起作用的图像识别模型(例如,极度黑,模糊或高动态范围条件)必须有用。但是,由于数据收集和注释的困难,为此类环境创建培训数据集是昂贵而艰难的。如果我们可以在不需要难以实现的数据集的情况下获得强大的模型,那么这是可取的。一种简单的方法是将数据增强(例如颜色抖动和模糊)应用于简单场景中的标准RGB(SRGB)图像。不幸的是,由于不考虑图像信号处理器(ISP)的非线性和图像传感器的噪声特性,因此这种方法努力从像素强度和噪声分布方面产生逼真的图像。取而代之的是,我们提出了一种噪声计算的原始图像增强方法。从本质上讲,在应用非线性ISP之前,将颜色抖动和模糊增强量应用于原始图像,从而产生现实的强度。此外,我们引入了一种噪声量对准方法,该方法可以校准由增强引起的噪声特性中的域间隙。我们表明,我们提出的噪声调查原始增强方法仅通过简单的训练数据在具有挑战性的环境中使图像识别精度翻了一番。

Image recognition models that work in challenging environments (e.g., extremely dark, blurry, or high dynamic range conditions) must be useful. However, creating training datasets for such environments is expensive and hard due to the difficulties of data collection and annotation. It is desirable if we could get a robust model without the need for hard-to-obtain datasets. One simple approach is to apply data augmentation such as color jitter and blur to standard RGB (sRGB) images in simple scenes. Unfortunately, this approach struggles to yield realistic images in terms of pixel intensity and noise distribution due to not considering the non-linearity of Image Signal Processors (ISPs) and noise characteristics of image sensors. Instead, we propose a noise-accounted RAW image augmentation method. In essence, color jitter and blur augmentation are applied to a RAW image before applying non-linear ISP, resulting in realistic intensity. Furthermore, we introduce a noise amount alignment method that calibrates the domain gap in the noise property caused by the augmentation. We show that our proposed noise-accounted RAW augmentation method doubles the image recognition accuracy in challenging environments only with simple training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源