论文标题
部分可观测时空混沌系统的无模型预测
Mitigating Health Disparities in EHR via Deconfounder
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Health disparities, or inequalities between different patient demographics, are becoming crucial in medical decision-making, especially in Electronic Health Record (EHR) predictive modeling. To ensure the fairness of sensitive attributes, conventional studies mainly adopt calibration or re-weighting methods to balance the performance on among different demographic groups. However, we argue that these methods have some limitations. First, these methods usually mean a trade-off between the model's performance and fairness. Second, many methods completely attribute unfairness to the data collection process, which lacks substantial evidence. In this paper, we provide an empirical study to discover the possibility of using deconfounder to address the disparity issue in healthcare. Our study can be summarized in two parts. The first part is a pilot study demonstrating the exacerbation of disparity when unobserved confounders exist. The second part proposed a novel framework, Parity Medical Deconfounder (PriMeD), to deal with the disparity issue in healthcare datasets. Inspired by the deconfounder theory, PriMeD adopts a Conditional Variational Autoencoder (CVAE) to learn latent factors (substitute confounders) for observational data, and extensive experiments are provided to show its effectiveness.