论文标题

新的魔术状态蒸馏工厂通过时间编码的晶格手术优化

New magic state distillation factories optimized by temporally encoded lattice surgery

论文作者

Prabhu, Prithviraj, Chamberland, Christopher

论文摘要

易于校准的耐故障量子计算机,并使用拓扑代码实现了误差校正,很可能需要晶格手术协议才能实现通用门集。晶格手术方案中的时间型失败可能会导致算法执行期间的逻辑失败。除了用于保护量子器免受错误的拓扑代码的间距距离外,还有及时的距离,在晶格手术方案中,综合征测量回合的数量给出。因此,较大的时间表要求将导致算法运行时的放缓。晶格手术(TELS)的时间编码是一种可用于减少晶格手术方案中所需的综合征测量回合数量的技术。这是通过测量一组过度通勤的多Qubit Pauli运算符(称为可行的Pauli集)来完成的,该操作员形成了经典错误校正代码的代码字。然后可以使用过度完整的Pauli测量结果来检测并可能正确的定时晶格手术故障。在这项工作中,我们引入了改进的Tels协议,并随后以纠正低重量经典错误的能力来扩展其,从而在算法运行时提高了更大的加速。我们还探索了大型经典错误校正代码的大型家族,以适应多种可行的Pauli设置尺寸。我们还将Tels应用于偏见噪声的背景下,在逻辑Qubits中,在不对称的表面代码中编码了Tels。使用优化的布局,与以前的协议相比,我们显示了魔术状态工厂的时空成本的改进。使用Clifford框架中执行的计算来实现此类改进。

Fault-tolerant quantum computers, with error correction implemented using topological codes, will most likely require lattice surgery protocols in order to implement a universal gate set. Timelike failures during lattice surgery protocols can result in logical failures during the execution of an algorithm. In addition to the spacelike distance of the topological code used to protect the qubits from errors, there is also the timelike distance which is given by the number of syndrome measurement rounds during a lattice surgery protocol. As such, a larger timelike distance requirement will result in the slowdown of an algorithm's runtime. Temporal encoding of lattice surgery (TELS) is a technique which can be used to reduce the number of syndrome measurement rounds that are required during a lattice surgery protocol. This is done by measuring an over-complete set of mutually commuting multi-qubit Pauli operators (referred to as a parallelizable Pauli set) which form codewords of a classical error correcting code. The results of the over-complete set of Pauli measurements can then be used to detect and possibly correct timelike lattice surgery failures. In this work, we introduce an improved TELS protocol and subsequently augment it with the ability to correct low-weight classical errors, resulting in greater speedups in algorithm runtimes. We also explore large families of classical error correcting codes for a wide range of parallelizable Pauli set sizes. We also apply TELS to magic state distillation protocols in the context of biased noise, where logical qubits are encoded in asymmetric surface codes. Using optimized layouts, we show improvements in the space-time cost of our magic state factories compared to previous protocols. Such improvements are achieved using computations performed in the Clifford frame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源