论文标题

带有应用

Sharp log-Sobolev inequalities in ${\sf CD}(0,N)$ spaces with applications

论文作者

Balogh, Zoltán M., Kristály, Alexandru, Tripaldi, Francesca

论文摘要

给定的$ p,n> 1,$我们证明了在非策略度量度量空间上的尖锐$ l^p $ -log-sobolev不平等,满足$ {\ sf cd}(0,n)$条件,其中最佳常数涉及该空间的渐近量比。此证明基于$ {\ sf cd}(0,n)$空间,对称性和仔细的缩放参数的尖锐等级不等式。作为一个应用程序,我们为$ {\ sf cd}(0,n)$ spaces建立了HOPF-LAX SEMIGROUP的尖锐超收缩率。此结果的证据使用了Hopf-Lax半群的Hamilton-Jacobi不平等和SOBOLEV的规律性特性,事实证明这在当前非平滑和非划界空间的情况下至关重要。此外,还以$ {\ sf rcd}(0,n)$ spaces获得了尖锐的高斯型$ l^2 $ -log-sobolev不平等。我们的结果是新的,即使在Riemannian/Finsler歧管的平稳环境中也是如此。特别是,ni(J.Geom。Anal。,2004)对Riemannian歧管的著名刚性结果的扩展将是我们敏锐的log-Sobolev不平等的简单结果。

Given $p,N>1,$ we prove the sharp $L^p$-log-Sobolev inequality on noncompact metric measure spaces satisfying the ${\sf CD}(0,N)$ condition, where the optimal constant involves the asymptotic volume ratio of the space. This proof is based on a sharp isoperimetric inequality in ${\sf CD}(0,N)$ spaces, symmetrisation, and a careful scaling argument. As an application we establish a sharp hypercontractivity estimate for the Hopf-Lax semigroup in ${\sf CD}(0,N)$ spaces. The proof of this result uses Hamilton-Jacobi inequality and Sobolev regularity properties of the Hopf-Lax semigroup, which turn out to be essential in the present setting of nonsmooth and noncompact spaces. Furthermore, a sharp Gaussian-type $L^2$-log-Sobolev inequality is also obtained in ${\sf RCD}(0,N)$ spaces. Our results are new, even in the smooth setting of Riemannian/Finsler manifolds. In particular, an extension of the celebrated rigidity result of Ni (J. Geom. Anal., 2004) on Riemannian manifolds will be a simple consequence of our sharp log-Sobolev inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源