论文标题
通过从点云中进行空间时期抽象进行可变形对象操纵的计划
Planning with Spatial-Temporal Abstraction from Point Clouds for Deformable Object Manipulation
论文作者
论文摘要
有效的长马可变形物体操作的计划需要在空间和时间水平上进行适当的抽象。以前的方法通常专注于短马任务,或者做出强有力的假设,即可以使用全州信息,从而阻止了它们在可变形对象上的使用。在本文中,我们提出了使用空间抽象(面食)的计划,其中既包含空间抽象(有关对象及其彼此关系的推理)和时间抽象(对技能而不是低级动作进行推理)。我们的框架将高维3D观测值(例如点云)映射到一组潜在的向量中,并计划在潜在集合表示之上进行技能序列。我们表明,我们的方法可以在现实世界中有效执行具有挑战性的顺序可变形对象操纵任务,这些任务需要将多种工具使用技能结合起来,例如将刀具与刀切,用推动器推送,并用滚筒将面团散布。
Effective planning of long-horizon deformable object manipulation requires suitable abstractions at both the spatial and temporal levels. Previous methods typically either focus on short-horizon tasks or make strong assumptions that full-state information is available, which prevents their use on deformable objects. In this paper, we propose PlAnning with Spatial-Temporal Abstraction (PASTA), which incorporates both spatial abstraction (reasoning about objects and their relations to each other) and temporal abstraction (reasoning over skills instead of low-level actions). Our framework maps high-dimension 3D observations such as point clouds into a set of latent vectors and plans over skill sequences on top of the latent set representation. We show that our method can effectively perform challenging sequential deformable object manipulation tasks in the real world, which require combining multiple tool-use skills such as cutting with a knife, pushing with a pusher, and spreading the dough with a roller.