论文标题

稳健点云分类的点 - 素体自适应特征抽象

Point-Voxel Adaptive Feature Abstraction for Robust Point Cloud Classification

论文作者

Zhu, Lifa, Lin, Changwei, Zheng, Chen, Yang, Ninghua

论文摘要

通过基于学习的方法,已经在云分类中取得了巨大进展。但是,在现实世界应用中,复杂的场景和传感器不准确使点云数据遭受损坏,例如遮挡,噪声和异常值。在这项工作中,我们提出了基于点素的自适应(PV-ADA)特征抽象,以在各种腐败下进行稳健的点云分类。具体而言,提出的框架迭代介绍了点云和提取点素的特征,并具有共享的本地编码和变压器。然后,提出了自适应最大泵来鲁棒地汇总分类的点云特征。 ModelNet-C数据集的实验表明,PV-ADA优于最新方法。特别是,我们将$ 2^{nd} $排名在ModelNet-C分类曲目中,挑战2022,总准确度(OA)为0.865。代码将在https://github.com/zhulf0804/pv-ada上找到。

Great progress has been made in point cloud classification with learning-based methods. However, complex scene and sensor inaccuracy in real-world application make point cloud data suffer from corruptions, such as occlusion, noise and outliers. In this work, we propose Point-Voxel based Adaptive (PV-Ada) feature abstraction for robust point cloud classification under various corruptions. Specifically, the proposed framework iteratively voxelize the point cloud and extract point-voxel feature with shared local encoding and Transformer. Then, adaptive max-pooling is proposed to robustly aggregate the point cloud feature for classification. Experiments on ModelNet-C dataset demonstrate that PV-Ada outperforms the state-of-the-art methods. In particular, we rank the $2^{nd}$ place in ModelNet-C classification track of PointCloud-C Challenge 2022, with Overall Accuracy (OA) being 0.865. Code will be available at https://github.com/zhulf0804/PV-Ada.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源