论文标题
1/c一般相对性的1/c膨胀的3+1公式
A 3+1 formulation of the 1/c expansion of General Relativity
论文作者
论文摘要
在光的反速度下扩大一般相对性,1/c,导致了非层次主义的引力理论,该理论通过包含额外的强力电位来扩展牛顿后的扩张。该理论在牛顿 - 卡丹几何形状的语言中具有完全协变的表述,但我们以3+1的表述对其进行了重新审视。适当的3+1一般相对性的表述是由Kol和Smolkin(KS)首先描述的,而不是众所周知的Arnowitt-Deser-Misner(ADM)形式主义。当我们回顾时,KS公式对ADM配方是双重的,因为切线和共同空间的作用被互换。在此3+1公式中,可以以更系统和有效的方式进行1/c扩展,我们用来将有效Lagrangian的计算扩展到以前实现的范围之外,并使许多新的所有订单观察结果。
Expanding General Relativity in the inverse speed of light, 1/c, leads to a nonrelativistic gravitational theory that extends the Post-Newtonian expansion by the inclusion of additional strong gravitational potentials. This theory has a fully covariant formulation in the language of Newton-Cartan geometry but we revisit it here in a 3+1 formulation. The appropriate 3+1 formulation of General Relativity is one first described by Kol and Smolkin (KS), rather than the better known Arnowitt-Deser-Misner (ADM) formalism. As we review, the KS formulation is dual to the ADM formulation in that the role of tangent and co-tangent spaces get interchanged. In this 3+1 formulation the 1/c expansion can be performed in a more systematic and efficient fashion, something we use to extend the computation of the effective Lagrangian beyond what was previously achieved and to make a number of new all order observations.