论文标题

部分可观测时空混沌系统的无模型预测

Isometric 3D Adversarial Examples in the Physical World

论文作者

Miao, Yibo, Dong, Yinpeng, Zhu, Jun, Gao, Xiao-Shan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

3D deep learning models are shown to be as vulnerable to adversarial examples as 2D models. However, existing attack methods are still far from stealthy and suffer from severe performance degradation in the physical world. Although 3D data is highly structured, it is difficult to bound the perturbations with simple metrics in the Euclidean space. In this paper, we propose a novel $ε$-isometric ($ε$-ISO) attack to generate natural and robust 3D adversarial examples in the physical world by considering the geometric properties of 3D objects and the invariance to physical transformations. For naturalness, we constrain the adversarial example to be $ε$-isometric to the original one by adopting the Gaussian curvature as a surrogate metric guaranteed by a theoretical analysis. For invariance to physical transformations, we propose a maxima over transformation (MaxOT) method that actively searches for the most harmful transformations rather than random ones to make the generated adversarial example more robust in the physical world. Experiments on typical point cloud recognition models validate that our approach can significantly improve the attack success rate and naturalness of the generated 3D adversarial examples than the state-of-the-art attack methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源