论文标题
神经架构搜索的分层量子电路表示
Hierarchical quantum circuit representations for neural architecture search
论文作者
论文摘要
用层次量子电路(通常称为量子卷积神经网络(QCNN))的机器学习是近期量子计算的有前途的前景。 QCNN是受卷积神经网络(CNN)架构启发的电路模型。 CNN之所以成功,是因为它们不需要手动功能设计,并且可以从原始数据中学习高级功能。神经体系结构搜索(NAS)通过学习网络体系结构并实现最先进的性能来建立这一成功。但是,由于缺乏定义明确的搜索空间,将NAS应用于QCNN会带来独特的挑战。在这项工作中,我们提出了一个新颖的框架,用于使用NAS的技术来表示QCNN架构,该技术可以搜索空间设计和体系结构搜索。使用此框架,我们生成了一个流行的QCNN家族,这些家族类似于反向二进制树。然后,我们在音乐类型分类数据集GTZAN上评估了这个模型家族,以证明电路体系结构的重要性是合理的。此外,我们采用一种遗传算法来执行量子相识别(QPR),作为用我们的表示形式进行体系结构搜索的一个例子。这项工作提供了一种改善模型性能的方法,而无需提高复杂性并绕过成本景观以避免贫瘠的高原。最后,我们将该框架作为开源Python软件包实现,以启用动态QCNN创建并促进NAS的QCNN搜索空间设计。
Machine learning with hierarchical quantum circuits, usually referred to as Quantum Convolutional Neural Networks (QCNNs), is a promising prospect for near-term quantum computing. The QCNN is a circuit model inspired by the architecture of Convolutional Neural Networks (CNNs). CNNs are successful because they do not need manual feature design and can learn high-level features from raw data. Neural Architecture Search (NAS) builds on this success by learning network architecture and achieves state-of-the-art performance. However, applying NAS to QCNNs presents unique challenges due to the lack of a well-defined search space. In this work, we propose a novel framework for representing QCNN architectures using techniques from NAS, which enables search space design and architecture search. Using this framework, we generate a family of popular QCNNs, those resembling reverse binary trees. We then evaluate this family of models on a music genre classification dataset, GTZAN, to justify the importance of circuit architecture. Furthermore, we employ a genetic algorithm to perform Quantum Phase Recognition (QPR) as an example of architecture search with our representation. This work provides a way to improve model performance without increasing complexity and to jump around the cost landscape to avoid barren plateaus. Finally, we implement the framework as an open-source Python package to enable dynamic QCNN creation and facilitate QCNN search space design for NAS.