论文标题

带有二次非线性$ \ overline {u}^2 $的周期性非线性schrödinger方程的本地良好性

Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity $\overline{u}^2$ in negative Sobolev spaces

论文作者

Liu, Ruoyuan

论文摘要

我们研究了非线性schrödinger方程(NLS)的低规律性局部良好性,其二维非线性$ \ edline {u}^2 $,在一维和二维Tori上构成。尽管相关的双线性估计值相对于$ x^{s,b} $ - 众所周知,当规则性$ s $低于某个阈值时,众所周知,空间会失败,但我们通过对$ x^{s,b} $ space引入$ x^{s^{s,b} $ space来建立如此低规律性的本地良好性。

We study low regularity local well-posedness of the nonlinear Schrödinger equation (NLS) with the quadratic nonlinearity $\overline{u}^2$, posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the $X^{s, b}$-space is known to fail when the regularity $s$ is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the $X^{s, b}$-space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源