论文标题
量子理论中波动方程的一些论点3
Some Arguments for the Wave Equation in Quantum Theory 3
论文作者
论文摘要
我们证明,存在对1维波方程的电荷解决方案,并且一个相应的电流,使得对满足连续性方程。我们表明,当将它们扩展到包含单位圆的消失的环上的连续性方程的平滑解,并带有相应的因果溶液到Maxwell的方程式,从Jefimenko的方程中获得,时间周期中无限辐射的功率为零。
We prove there exists a charge solution to the 1-dimensional wave equation, and a corresponding current, such that the pair satisfy the continuity equation. We show that when they are extended to a smooth solution of the continuity equation on a vanishing annulus containing the unit circle, with a corresponding causal solution to Maxwell's equations, obtained from Jefimenko's equations, the power radiated at infinity in a time cycle is zero.