论文标题
用于系统异常检测条件随机场的分层方法
A Hierarchical Approach to Conditional Random Fields for System Anomaly Detection
论文作者
论文摘要
在许多行业中,以时间敏感的方式识别大规模系统中异常事件的异常检测至关重要。银行欺诈,企业系统,医疗警报等。大规模系统通常会随着时间的推移而大小和复杂性,并且需要适应变化的结构。层次结构方法利用了复杂系统和本地化环境中的隐式关系。复杂系统中的功能可能在数据分发中差异很大,从多个数据源捕获不同方面,并且当组合在一起时,可以更完整地查看系统。在本文中,考虑了两个数据集,其中包括从云服务上运行的机器的系统指标,以及来自其系统节点中固有层次结构和互连的大规模分布式软件系统的第二个应用程序指标。比较基于变更点的PELT算法的算法,基于认知学习的层次层次内存算法,支持向量机和条件随机字段为提出基础提供了一个基础,该基础是提出层次的层次结构全局条件随机场方法,以在各种特征中精确捕获复杂系统中精确捕获复杂系统中的异常。层次结构算法可以学习特定特征的复杂性,并在全局抽象的表示中利用它们,以跨多源功能数据和分布式系统牢固地检测异常模式。对复杂系统的图形网络分析可以基于可用功能将数据集进行进一步调整到地雷关系,这可以使层次模型受益。此外,当系统的一部分被过度使用时,层次解决方案可以很好地适应局部级别的变化,在新数据上学习和不断变化的环境,并将这些学习转化为随着时间的推移的全局视图。
Anomaly detection to recognize unusual events in large scale systems in a time sensitive manner is critical in many industries, eg. bank fraud, enterprise systems, medical alerts, etc. Large-scale systems often grow in size and complexity over time, and anomaly detection algorithms need to adapt to changing structures. A hierarchical approach takes advantage of the implicit relationships in complex systems and localized context. The features in complex systems may vary drastically in data distribution, capturing different aspects from multiple data sources, and when put together provide a more complete view of the system. In this paper, two datasets are considered, the 1st comprising of system metrics from machines running on a cloud service, and the 2nd of application metrics from a large-scale distributed software system with inherent hierarchies and interconnections amongst its system nodes. Comparing algorithms, across the changepoint based PELT algorithm, cognitive learning-based Hierarchical Temporal Memory algorithms, Support Vector Machines and Conditional Random Fields provides a basis for proposing a Hierarchical Global-Local Conditional Random Field approach to accurately capture anomalies in complex systems across various features. Hierarchical algorithms can learn both the intricacies of specific features, and utilize these in a global abstracted representation to detect anomalous patterns robustly across multi-source feature data and distributed systems. A graphical network analysis on complex systems can further fine-tune datasets to mine relationships based on available features, which can benefit hierarchical models. Furthermore, hierarchical solutions can adapt well to changes at a localized level, learning on new data and changing environments when parts of a system are over-hauled, and translate these learnings to a global view of the system over time.