论文标题
使用最小熵耦合完美安全的隐肌
Perfectly Secure Steganography Using Minimum Entropy Coupling
论文作者
论文摘要
隐肌是将秘密信息编码为无害内容的实践,使对手第三方不会意识到存在隐藏的含义。尽管在安全文献中对这个问题进行了古典研究,但生成模型的最新进展导致安全和机器学习研究人员在开发可扩展的隐肌技术方面的共同兴趣。在这项工作中,我们表明,在Cachin(1998)的信息理论模型且仅当它是由耦合引起时,地理程序是完全安全的。此外,我们表明,在完美安全的过程中,一个过程在且仅在最小熵耦合诱导的情况下才能最大化信息吞吐量。据我们所知,这些见解产生的是第一个对任意封面分布的完美安全保证的模拟算法。为了提供经验验证,我们使用GPT-2,Wavernn和Image Transformer作为通信渠道将基于最小熵耦合的方法(算术编码,流星和自适应动态分组)进行了比较。我们发现,尽管安全性更强,但基于最小熵耦合的方法仍达到了卓越的编码效率。在总体上,这些结果表明,通过最小熵耦合的镜头查看信息理论的隐身可能是很自然的。
Steganography is the practice of encoding secret information into innocuous content in such a manner that an adversarial third party would not realize that there is hidden meaning. While this problem has classically been studied in security literature, recent advances in generative models have led to a shared interest among security and machine learning researchers in developing scalable steganography techniques. In this work, we show that a steganography procedure is perfectly secure under Cachin (1998)'s information-theoretic model of steganography if and only if it is induced by a coupling. Furthermore, we show that, among perfectly secure procedures, a procedure maximizes information throughput if and only if it is induced by a minimum entropy coupling. These insights yield what are, to the best of our knowledge, the first steganography algorithms to achieve perfect security guarantees for arbitrary covertext distributions. To provide empirical validation, we compare a minimum entropy coupling-based approach to three modern baselines -- arithmetic coding, Meteor, and adaptive dynamic grouping -- using GPT-2, WaveRNN, and Image Transformer as communication channels. We find that the minimum entropy coupling-based approach achieves superior encoding efficiency, despite its stronger security constraints. In aggregate, these results suggest that it may be natural to view information-theoretic steganography through the lens of minimum entropy coupling.