论文标题
通过异构模块化网络的个性化联合学习
Personalized Federated Learning via Heterogeneous Modular Networks
论文作者
论文摘要
个性化联合学习(PFL),协作训练联合模型的同时考虑在隐私限制下的本地客户引起了很多关注。尽管它很受欢迎,但已经观察到,当当地客户之间的联合分布分歧时,现有的PFL方法会导致次优的解决方案。为了解决这个问题,我们介绍了联合模块化网络(FEDMN),这是一种新颖的PFL方法,可以适应从模块池中选择子模块,以为不同客户组装异质的神经体系结构。 FEDMN采用轻加权路由超网络,以对每个客户端的联合分布进行建模,并为每个客户提供个性化的模块块选择。为了减轻现有FL的通信负担,我们开发了一种有效的方法来在客户和服务器之间进行交互。我们在现实世界测试床上进行了广泛的实验,结果既显示了拟议的FEDMN在基线上的有效性和效率。
Personalized Federated Learning (PFL) which collaboratively trains a federated model while considering local clients under privacy constraints has attracted much attention. Despite its popularity, it has been observed that existing PFL approaches result in sub-optimal solutions when the joint distribution among local clients diverges. To address this issue, we present Federated Modular Network (FedMN), a novel PFL approach that adaptively selects sub-modules from a module pool to assemble heterogeneous neural architectures for different clients. FedMN adopts a light-weighted routing hypernetwork to model the joint distribution on each client and produce the personalized selection of the module blocks for each client. To reduce the communication burden in existing FL, we develop an efficient way to interact between the clients and the server. We conduct extensive experiments on the real-world test beds and the results show both the effectiveness and efficiency of the proposed FedMN over the baselines.