论文标题
光滑仿射曲线上矢量场的Lie代数的支架宽度
Bracket width of the Lie algebra of vector fields on a smooth affine curve
论文作者
论文摘要
我们证明,矢量字段的简单谎言代数的支架宽度$ \ rm {vec}(c)$ a Place不可减至的仿射曲线$ c $,最多三个。此外,如果$ c $是平面曲线,则最多是$ \ rm {vec}(c)$的支架宽度最多是两个,如果此外$ c $在infinity中具有独特的位置,则$ \ rm {vec}(vec}(c)$的支架宽度正好是两个。 我们还表明,如果$ c $是理性的,则$ \ rm {vec}(c)$等于一个。
We prove that the bracket width of the simple Lie algebra of vector fields $\rm{Vec}(C)$ of a smooth irreducible affine curve $C$ with a trivial tangent sheaf is at most three. In addition, if $C$ is a plane curve, the bracket width of $\rm{Vec}(C)$ is at most two and if moreover $C$ has a unique place at infinity, the bracket width of $\rm{Vec}(C)$ is exactly two. We also show that in case $C$ is rational, the width of $\rm{Vec}(C)$ equals one.